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The unsteady, compressible, thin-layer Navier-Stokes equations are used to numerically study

the passive control of steady and unsteady supersonic asymmetric flows around circular and
noncircular cones. The main computational scheme of the present study is an implicit upwind,
flux-difference splitting, finite-volume scheme. Passive control of flow asymmetry is studied by

using a vertical fin in the leeward plane of geometric symmetry and side strakes with and without
thickness at different orientations. The study focuses on circular-section cones since they are the

most likely section-shapes for strong flow asymmetry. Side-strake passive control is shown to be
more efficient and practical than vertical-fin passive control. © 1992AcademicPress.Inc.

INTRODUCTION

In the moderate to high angle-of-attack (AOA) ranges, which are typical

flight conditions for h/ghly maneuverable fighter aircraft and missiles, extensive

regions of vortex-dominated flow develop on the vehicle.

Within these AOA ranges, the cross-flow velocity components and the gra-

dients of other flow variables become of the same order of magnitude as or

higher than those of the axial direction. Consequently, flow separation occurs

and vortices emanate from the three-dimensional separation lines ofboundary-

layer flows on wings, strakes, and fuselage of the vehicle. If the vortices are

symmetric and stable, their influence can be exploited favorably to provide

high lift and maneuverability for the vehicle. On the other hand, if the vortices
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become asymmetric or if vortex breakdown occurs, the useful influence of

the vortices is terminated. Large side forces, asymmetric lifting forces, and

corresponding yawing, rolling, and pitching moments, which may be larger

than those provided by the vehicle control system, develop and jeopardize

flight safety. The onset of buffeting due to vortex breakdown is another un-

favorable vortex-induced phenomenon.

Highly swept, round- and sharp-leading-edge wings, and pointed slender

bodies are common aerodynamic components of fighter aircraft and missiles.

The study of vortex-dominated flow around these isolated aerodynamic com-

ponents adds to our basic understanding of vortex-dominated flows. The so-

lution of asymmetric vortex flow about slender bodies in the high AOA range

is vital to the dynamic stability and controllability of fighter aircraft and mis-

siles. The onset of flow asymmetry occurs when the relative incidence (ratio

of angle of attack to nose semiapex angle) of pointed forebodies exceeds certain

critical values. At these critical values of relative incidence, flow asymmetry

develops due to natural and/or forced disturbances. The origin of natural

disturbances may be a transient sideslip, an acoustic disturbance, or a similar

disturbance of short duration. Forced disturbances, however, are caused by

geometric perturbations due to imperfections in the nose geometric symmetry

or similar disturbances of a permanent nature. In addition to the relative

incidence as one of the determinable parameters for the onset of flow asym-

metry, the freestream Mach number, Reynolds number, and body cross-sec-

tion shape are important determinable parameters.

Several computational attempts have been made to simulate asymmetric

vortical flows around slender bodies [1-7]. Kandil, Wong, and Liu [5] used

the unsteady thin-layer Navier-Stokes equations along with two different im-

plicit schemes to simulate asymmetric vortex flows around cones with different

cross-section shapes. The numerical investigation was focused on a 5 °-semi-

apex angle circular cone under locally conical flow assumption. The first

computational scheme was an upwind, flux-difference splitting, finite-volume

scheme and the second one was an implicit, central-difference, finite-volume

scheme. The Mach number and Reynolds number being held constant at 1.8

and 105, respectively, the angle of attack (_) was varied from 10 ° to 30 °. At

a = 10 °, a steady symmetric solution was obtained and the results of the two

schemes were in excellent agreement. At a = 20 ° and irrespective of the type

or level of the disturbance, a steady asymmetric solution was obtained and

the results of the two schemes were in excellent agreement. Two types of flow

disturbances were used; a random round-off error or a random truncation-

error disturbance, and a controlled transient sideslip disturbance with short

duration. For the controlled transient sideslip disturbance the solution was

unique, and for the uncontrolled random disturbance the solution was also

unique with the exception of having the same asymmetry changing sides on

the cone. At a = 30 °, an unsteady asymmetric solution with vortex shedding

was obtained, and the vortex shedding was perfectly periodic. Next, the angle
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of attack was kept fixed at 20 ° and the Mach number was increased from 1.8

to 3.0 in increments of 0.4. The solutions showed that the asymmetry became

weaker as the Mach number was increased. The flow recovered its symmetry

when the Mach number reached 3.0. Selected solutions of steady and unsteady

asymmetric flows were also presented for cones with elliptic and diamond

cross-sectional areas.

In a later paper by the present authors [6], several issues related to the

asymmetric flow solutions were addressed. It was shown that a unique asym-

metric flow solution is obtained irrespective of the size of the minimum grid

spacing at the solid boundary. The asymmetry could reverse sides due to the

random nature of the disturbance. It was also shown that for the same flow

conditions and same section fineness ratio, diamond-section cones with sharp

edges have less flow asymmetry than elliptic-section cones. Again, it was also

shown that unsteady periodic asymmetric flow with vortex shedding is pre-

dicted. In Ref. [7] by Kandil, Wong, and Liu, several unsteady, asymmetric

vortex flows with periodic vortex shedding for circular and noncircular-section

cones were presented and studied.

Experimental research efforts have also been made to control asymmetric

flows for eliminating or attenuating the asymmetric forces and the resulting

moments by using either passive-control [8- I 0] or active-control [ 1 I- 13]

methods. Passive-control methods include the use of a vertical fin on the

leeward side along the plane of geometric symmetry [8], the use of fixed or

movable forebody strakes [9-12], or the use of a rotatable forebody tip having

variable cross section (from a circular shape at its base to an elliptic shape at

its tip [ 10]). Active control methods primarily include the use of blowing ports

with various blowing rates and directions on the forebody surface [11, 12].

Computational simulations have also been used to study the effectiveness of

both passive [5] and active control methods [13].

In the present paper, we present a computational study for passive control

of supersonic asymmetric vortical flows around cones using a vertical fin in

the leeward plane of geometric symmetry and side strakes with and without

thickness at different orientations. Although the present study has been focused

on passive control of circular-section cones, a few applications have been

considered for noncircular-section cones.

FORMULATION

Governing Equations

The three-dimensional, compressible, viscous flow around the body is gov-

erned by the conservative form of the dimensionless, unsteady, compressible

Navier-Stokes equations. Introducing the time-independent body-conforming

coordinates _, _2, and _3, and applying thin-layer approximations to the gov-

erning equations in _2 and _3 directions yields the transformed equations

q
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(2)

/_s ----inviscid flux

1

= _I [pUs, pu_ Us + Oll_SP, pu2Us + 02_Sp, pu3Us + 03_Sp, (pe + p)Us]t;

s= 1,2,3 (3)

(_'02 -- viscous and heat-conduction flux in the 62 direction

1

= _ [0, Ok_2Tkl, Ok_2Tk2, Ok_2rk3, Ok_2(Un'rkn -- qk)] 1 (4)

(/_'v)3 - viscous and heat-conduction flux in the _3 direction

1

= _ [0, Ok_aTkl, Ok_3"rk2, Ok_3Tk3, Ok_3(UnTkn -- qk)] t (5)

Us = 0_'uk. (6)

The first of the three momentum elements of Eq. (5) is given by

where

(7)

,
+ _ + _) + (_ - 1)Pr __ JJ (9)

For Eq. (4), in the case of thin-layer approximations applied to the _2 direction,

the elements are given by equations similar to Eqs. (7)-(9) with the exception

=- _ $o£u. + _ i_(ul,

ak$3(U, rk,, - qk)

The second and third momentum elements are obtained by replacing the

subscript l, everywhere in Eq. (7), with 2 and 3, respectively. The last element

of Eq. (5) is given by

1 OU k

¢ = Ok$3a_ 3, ¢ = _ ok63 _-_. (8)
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of replacing _3 by _2. This set of thin-layer Navier-Stokes equations is used

only for the passive control eases using a vertical fin since the existence of

the fin creates a second viscous thin layer which is perpendicular to the cone's

thin layer. This viscous layer on the fin is in the _3 direction. For the passive

control cases using side strakes, thin-layer equations in _2 direction are used

since the viscous layers on the strakes are in the _2 direction due to the method

used to construct the grid around the strakes. The reference parameters for

the dimensionless form of the equations are L, a_, L/aoo, p_, and #_ for the

length, velocity, time, density, and molecular viscosity, respectively. The

Reynolds number is defined as Re = p_ Vo_L/#oo, and the pressure, p, is related

to the total energy per unit mass and density by the gas equation

[1 ]P=(3'- 1)p e-_(u21 + _ + _) . (10)

The viscosity is calculated from the Sutherland law

#= T3/2( 1 + C I
_7-_J ' C = 0.4317, (11)

and the Prandtl number Pr = 0.72.

In Eqs. (1)-(9), indicial notation is used for convenience. Hence, the sub-

scripts k and n are summation indices, the superscript or subscript s is a

summation index. The range for k, n, and s is 1-3, and Ok -- O/OXk.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented. They include inflow-

outflow conditions and solid-boundary conditions. At the plane of geometric

symmetry, periodic conditions are used. At the far-field inflow boundaries,

freestream conditions are specified and the outer shock is captured as part of

the solution. At the far-field outflow boundaries first-order extrapolation from

the interior points is used. On the solid boundary, the no-slip and no-pene-

tration conditions are enforced (u_ = u2 = u3 = 0) and the normal pressure

gradient is set equal to zero. For the temperature, the adiabatic boundary

condition is enforced on the solid boundary. The initial conditions correspond

to uniform flow with uj = u2 = u3 -- 0 on the solid boundary.

For the passive control applications, solid-boundary conditions are enforced

on both sides of the fin or the strakes.

HIGHLIGHTS OF THE COMPUTATIONAL SCHEME

The main computational scheme used to solve the governing equations is

• an implicit, upwind, flux-difference splitting, finite-volume scheme. It employs
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the flux-difference splitting scheme of Roe, which is based on the solution of

the approximate Riemann problem. The inviscid flux difference at the cell

interface is split into left and right flux differences according to the signs of

the eigenvalues of the Roe averaged-Jacobian matrices of the inviscid fluxes

A, = 0/_/04; s = 1-3. Flux limiters are used to eliminate oscillations in the

shock region. The viscous and heat-flux terms are centrally differenced. The

resulting difference equation is solved using approximate factorization in the

_t, _2, and _3 directions. The computational scheme is coded in the computer

program "CFL3D." In this program, an implicit, flux-vector splitting, finite-

volume scheme, which is based on the Van Leer scheme [14], can also be

used instead of the flux-difference splitting scheme. The flux-vector splitting

scheme is also used to solve for the unsteady asymmetric flow application in

this paper. This application is a validation of the solution obtained previously

[5] for the same application using the flux-difference splitting scheme.

Since the applications in this paper cover conical flows only, the three-

dimensional scheme is used to solve for locally conical flows. This is achieved

by forcing the conserved components of the flow vector field to be equal at

the two axial planes located at x_ = 0.95 and 1.0 of the conical grid.

COMPUTATIONAL STUDIES

1. Passive Control For a Circular Cone Using a Vertical Fin, a = 20 °

In this section, we consider the control of steady asymmetric flow around

a 5°-semiapex angle circular cone at an angle of attack a = 20 °, freestream

Mach number M_ = 1.8, and freestream Reynolds number Re = l05. Two

vertical fins of heights h = 0.5r and r are placed in the leeward plane of

geometric symmetry, where r is the cone local radius. Figure 1 shows the

results of this study, which include the total-pressure-loss contours, the surface-

pressure coefficient versus the angle/9 (0 is measured from the leeward plane

of geometric symmetry in the clockwise direction), and the lift coefficient

versus the number of iterations. The figure also shows the results of the asym-

metric flow without a vertical fin [5]. With h = 0.5r, the flow is still strongly

asymmetric after 34,000 iterations. Comparing the case of no fin with the

case of h = 0.5r, it is seen that the asymmetry changed sides. This is due to

the random nature of the disturbance, which is a machine round-off error.

With h = 0.5r, two vortex cores, which are connected to each other and to

the body through free-shear layers, develop from the left side of the body.

From the right side of the body, a free-shear layer develops and crosses over

the fin to the left side of the body. It produces two vortex cores; one at each

corner of the body-fin juncture with secondary separations below them. This

case has been solved accurately in time but it does not show any vortex shed-
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FIG. 1. Passive control of asymmetric flow around a circular cone using a vertical fin. a = 20 °,

M= = 1.8, Re = 105, h = 0.5r and r(r,, cone local radius).

ding or unsteadiness. When the fin height is increased to h = r, perfect flow

symmetry is obtained. The lift-coefficient curves show that when flow asym-

metry develops, the lift coefficient increases over a small number of iterations

and remains constant thereafter. When the flow becomes symmetric, as with

h = r, the lift coefficient does not increase. The reason behind the flow asym-

metry with h = 0.5r is that the free-shear layer from the right-hand side of

the body is still higher than the fin height, which allows the flow disturbances

from the right and left side to interact.

Figure 2 shows a typical grid for studying passive control using a vertical

fin. It contains 161 × 81 grid points in the wrap-around and normal directions,

respectively. The grid is generated by using a modified Joukowski transfor-

mation with clustering in the normal direction at the cone surface, and clus-

tering in the wrap-around direction at the vertical fin surfaces. The maximum

radius of the computational domain is 21 r. The figure also shows blow-ups

of the cross-flow velocity in the cone-fin-juncture region for h = 0.5r and r.

It is noticed that two small recirculating bubbles exist under the vortex cores.
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FIG. 2. A typical grid for passive control using a vertical fin (161 X 81 grid points, A_2 = A_ 3

= 10 -4) and blow-ups of cross-flow velocity in the cone-fin juncture (a = 20 °, M_ = 1.8, Re =

10s).

2. Passive Control For a Circular Cone Using Side Strakes, a = 20 °

In Fig. 3, control of flow asymmetry for the same flow conditions as in the

first application is considered using sharp-edged thick strakes of height h =

0.3r. The side-strakes render the flow perfectly symmetric since the two primary

vortex cores, left and right, are pushed further apart preventing the flow dis-

turbances of the two sides from interacting. It is easily seen that there are four

vortices on each side; one is a primary vortex and three are secondary vortices.

The pressure-coefficient curve shows jumps at 0 = 90 ° and 270 °, where the

strakes are located. These jumps change the shape of the Cp-curve in com-

parison with that of the vertical-fin-control case. Moreover, the lift coefficient

of the side-strake-control case is double that of the vertical-fin-control case.
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FIG. 3. Passive control of asymmetric flow around a circular cone using shari>edged thick
strakes, a = 20", M= = 1.8, Re = 10_, h = 0.3r.

It is concluded that side-strake control in comparison with vertical-fin control

not only is efficient in providing higher lift, but also is more practical due to

the strake's shorter height, and hence lesser weight.

3. Passive Control For a Circular Cone Using Side Strakes with and

without Thickness, a = 30 °

In this case, the cone angle of attack is increased to 30 ° keeping all the

other flow conditions fixed. This flow application has been solved previously

in Ref. [5] by Kandil, Wong, and Liu using a flux-difference splitting (FDS)

scheme. The results showed unsteady asymmetric flow with periodic vortex

shedding. The total-pressure-loss contours of the time steps from 15,000 to

15,700, representing one-half the cycle during the periodic response, is shown

in Fig. 4. Other unsteady asymmetric flows with periodic vortex shedding

around elliptic-section and diamond-section cones have also been presented

by the authors in Refs. [5, 7]. In all these applications, the FDS scheme was

used. In order to show that the unsteady asymmetric solutions are not scheme

dependent, the effect of computational methodologies and numerical dissi-

pation on the solutions are examined in the present paper. The case of asym-

metric flow around a circular cone has also been computed using the flux-
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vector splitting (FVS) scheme of the same code. In Fig. 5, we show the time-

accurate solutions using the FVS scheme on the same grid. Using the FVS

scheme, the flux limiters are turned on, and as can be seen from the logarith-

mic-residual curve, the solution becomes symmetric and steady after 5000

time steps. Next, the flux limiters are turned off, and the solution shows a

transient response up to 12,000 time steps. Thereafter, the solution becomes

periodic with periodic asymmetric vortex shedding. The solution is shown

every 100 time steps starting from time step 13,900 until time step 14,600.

Although the process of adjusting the time instants to match those of the FDS

solution is difficult, it is seen that the captured snap shots of the FVS solution

almost match those of the FDS solution at time steps 15,000, 15,100, 15,200,

15,300, 15,400, 15,500, 15,600, and 15,700, respectively. Comparing the FVS

solutions at time step of 13,900 with that of 14,600, it is seen that they are

mirror images of each other. Hence, periodic flow response has been achieved

with a period of 1,400 × 10 -3 = 1.4, which is exactly the same period of

shedding as that of the FDS solution. This pinpoints the high numerical dis-

sipation effect of the FVS scheme when the flux limiters are turned on. The

resulting numerical dissipation in the FVS is large enough to dampen the

random disturbances of the flow solution. By turning off the flux limiters in
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FIG. 5. Unsteady asymmetric flow with vortex shedding around a circular cone using FVS

schemes, a = 30% M_ = 1.8, Re = 105, At = 10 -3.

the FVS scheme, the random disturbances can grow producing the asymmetric

unsteady vortex shedding. This also shows that the FDS scheme, even with

the flux limiters turned on, is less dissipative than the FVS scheme. These

results conclusively show that unsteady asymmetric flows are obtained irre-

spective of the numerical methodologies.
Next, we consider the control of this unsteady asymmetric flow using sharp-

edged thick strakes and flat-plate strakes with different orientations. For all

the strake shapes, the height is kept at 0.3r. Figure 6 shows the results of this

study using sharp-edged and flat-plate strakes at 6 = 0 °, 10 °, and - 10 °, where

/_ is the angle measured in the counter-clockwise direction from the horizontal

line at 0 = 90 °. For this angle of attack, all the strake orientations are still

effective in eliminating the unsteady asymmetric vortex shedding and ren-

dering the flow perfectly symmetric. Again the Cv-curves show jumps at the

strakes leading edges at O = 90 ° and 270 °. The lift coefficient of all controlled

flow cases, Fig. 7, is higher than that of the asymmetric flow case. With slight

differences in the lift coefficient, the highest lift is produced by the flat-plate

strakes with 6 = -l0 °, where the primary vortex cores are slightly closer to

the body surface than for the other cases.
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FIG. 6. Passive control of asymmetric flow around a circular cone using sharp-edged thick

strakes and flat-plate strakes with different orientations, a = 30 °, M= = 1.8, Re = 105, h = 0.3r.
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Comparing the results of the sharp-edged thick strakes at a = 30 ° with

those of the sharp-edged thick strakes at a = 20 ° (Fig. 3), we notice that the

primary vortex cores of the former are closer to the plane of symmetry and

higher above the cone surface than those of the latter.

In the bottom row of Fig. 7, we show typical grids for the cases of sharp-

edged thick strakes and the fiat-plate strakes with /5 = 10 °. The grids are

generated by using a hyperbolic grid generator with transfinite grid interpo-

lation to refine the grid in the strake region.

4. Passive Control For a Circular Cone Using Sharp-Edged Thick Strakes,

a = 40 °

For this case, the angle of attack is increased to a = 40 ° keeping all the

other flow conditions fixed. The same sharp-edged thick strakes of the previous

case (a = 30 °) have been used along with the same grid. Figure 8 shows the

results of this case. It is seen that although the Cp-curve looks perfectly sym-

metric and although the lift coefficient curve does not show any increase after

the time step 4,000, the total-pressure-loss contours show very slight asym-

metry. This indicates that the current height of the strakes might not be suf-
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FIG. 8. Passive control of asymmetric flow around a circular cone using sharp-edged thick
strakes, a = 40 °, M® = 1.8, Re = 10S, h = 0.3r.
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ficient to yield flow symmetry at higher angles of attack. The present solution

shows that the vortical flow substantially stretches upwards.

5. Passive Control For an Elliptic-Section Cone Using a Vertical Fin,

a = 25"

In order to produce a substantial flow asymmetry (of the same order as

that of the circular cone of Fig. l) for an elliptic-section cone of fineness ratio

fr = 0.6, the angle ofattack has been increased to a = 25 °, and the freestream

Mach number has been decreased to Mo_ = 1.5. Passive control of this flow

has been tested using vertical fins of heights h = 1.5a and 2a, where 2a is the

length of the cross-section minor axis. The grid is 161 × 81 in the wrap-

around and normal directions, and was generated by a modified Joukowski

transformation with minimum grid spacing of A_ 2 = 10 -4 and A_ 3 = 10 -4

(for the vertical-fin control). The results are shown in Figs. 9 and 10. For the

case with no fin, the lift coefficient shows an increase near step 7,000, and it

remains constant thereafter. For the case with h = l.Sa, the flow is still strongly

asymmetric and the lift coefficient shows an increase near step 8000. The

total-pressure-loss contours show a very long free-shear layer from the left

side. From the right side, the free-shear layer becomes higher than the vertical

fin and crosses over the fin to the left side. Two primary-vortex cores are

No Fin h=l.Sa h=2a
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FIG. 9. Passive control of asymmetric flow around an elliptic-section cone using vertical fin. t_

= 25 °, M_ = 1.5, Re = l0 S, fr = 0.6, h = 1.5a and 2a (2a - cone local minor-axis length).
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a vertical fin. a = 25 °, M_ = 1.5, Re = 10S, fr = 0.6, h = 1.5a and 2a.

formed at the cone-fin juncture with secondary separations below them. When

the fin height is increased to h = 2a, perfect symmetric flow is obtained and

the lift coefficient remains constant. The behavior of this vertical-fin control

case is very similar to that of the circular cone. As long as the vertical fin is

high enough as compared to the maximum height of the free-shear layer, flow

symmetry is obtained. Obviously, if side-strakes are used, they will push the

vortex cores further apart preventing disturbance interaction between the two

sides, and flow symmetry will be achieved.

6. Passive Control For a Diamond-Section Cone Using a Vertical Fin,

a = 25 °

For this case, the section fineness ratio is 0.8, the angle of attack is a =

25 °, and the freestream Mach number is 1.5. With the exception of the section

fineness ratio, the flow conditions of this case are the same as those of the

elliptic-section cone. This simply shows that for the same section fineness

ratio and same flow conditions, diamond-section cones with sharp edges pro-

duce less flow-asymmetry strength than that of elliptic-section cones.

Figure 11 shows the results of the diamond-section cone flow with and

without a vertical fin. For the flow-control case, a symmetric flow has been

obtained using a vertical fin of height h = l.Sa, which is shorter than that

required for the elliptic-section case.

CONCLUDING REMARKS

Computational studies for passive control of steady and unsteady, super-

sonic, asymmetric vortical flows have been carried out using vertical fins in

the leeward plane of geometric symmetry, and using side strakes with and

without thickness. The governing equations are the unsteady, compressible,

thin-layer Navier-Stokes equations. The equations have been solved using
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FIG. 11. Passive control of asymmetric flow around a diamond-section cone using a vertical
fin. a = 25 °, M® = 1.5, Re = 105, fr = 0.8, h = 1.5a.

an implicit, upwind, flux-difference splitting, finite-volume scheme. The flow-

control studies have focused on circular-section cones since they are the best

potential section-shapes for strong flow asymmetry. It has been shown that

side-strake passive control is very effective over a wide range of angle of attack.

It has also been shown that side-strake control is more efficient than vertical-

fin control in producing higher lift. Moreover, it is more practical since the

strakes have shorter height and, hence, less weight in comparison with the

vertical fin.
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